
Absorption Spectrum

(NOSE Implementation White Paper 1, ver. 1.0)

Tomá² Man£al

March 19, 2009

Charles University in Prague, Faculty of Mathematics of Physics
Ke Karlovu 5, 121 16 Prague 2, Czech Republic

Abstract

This paper describes implementation details of absorption spectrum calculation in NOSE.

1 Basic terms and theoretical background

Absorption spectroscopy is the simplest and oldest spectroscopic method available. The measured
absorption coe�cient is related to linear response function S(1)(t) by

α(ω) ≈ ω

n(ω)
Re

∞̂

0

dtS(1)(t)eiωt. (1)

The �rst order response function S(1)(t) is de�ned as

S(1)(t) = Tr{µ̂ρ̂(1)(t)} = Tr{µ̂U(t)µ̂ρ̂0} (2)

representing all quantities in by their matrix elements on an arbitrary �nite Hilbert space with
a basis of vectors |a⟩, e.g.

daj = ⟨a|µ|j⟩, (3)

the equation (2) leads to

S(1)(t) =
∑
ijab

djbUbjai(t)daiρ
0
ii. (4)

In this notation, we assume an existence of two distinct bands of states, one representing elec-
tronic ground- (indices i and j) and one the electronic excited state (indices a and b) of the
molecule. The energy level scheme of the model is presented in Fig.

1.1 Simpli�ed model

The simplest model of absorption spectrum is the one where so called secular approximation is
assumed, i.e.

Ubjai(t) = δabδijUaiai(t), (5)

1

and where so-called homogeneous limit is valid, i.e.

Uaiai(t) = e−Γait−iωait. (6)

The dephasingf constant Γai is a real number related to the width of the absorption spectrum,
and ωai is the transition frequency between the state |i⟩ in the ground state band and the state
|a⟩ in the excited state band.

2 Implementation details

The calculation of absorption spectrum is decoupled from other parts of the program. The
section calculating absorption expects certain quantities to be available to it from the previous
execution of the program. In the QME and TDPT-3 modules, all the quantities are available in
the global variable space. If external computation by e.g. a GPU are needed, these quantities
need to be sent to the computing device.

2.1 Fortran implementation

2.2 C/C++ implementation for CUDA

The main Fortran code of the NOSE calls a C function with the following interface

float* nosecuda_polar_1(int* N, float* rU, float* iU,

float* d, float* rho0)

The arguments are

/*

N[0] number of levels in the ground state band

N[1] number of levels in the excited state band

N[2] number of the time steps

rU[n] real part of the coherence evolution superoperator.

The relation between the superoperator indeces b,j,a,i and t and

the index n is

n = i + N[0]*(a + N[1]*(j + N[0]*(b + N[1]*t)))

iU[n] imaginary part of the coherence evolution superoperator

d[n] transition dipole moment elements. The relation between

n and the indices a, i of the states involved in the

transition is

n = i + N[0]*a

rho0[a] diagonal elements of the equilibrium ground state

density matrix

*/

Based in these arguments the function returns pointer to an array of the type float which
contains the time evolution of the response function S(1)(t) of Eq. (2) .

The line of code which is summed over all state indeces for each value of the index t can look
e.g. like this

2

/* t is set before */

for (i = 0; i < N[0]; i++) {

for (j = 0; j < N[0]; j++) {

for (a = 0; a < N[1]; a++) {

for (b = 0; b < N[1]; b++) {

/* real part of the result */

fr = d[b*N[0] + j]*d[a*N[0] + i]*rU[i +

N[0]*(a + N[1]*(j + N[0]*(b + N[1]*t)))]*rho0[i];

/* imaginary part of the result */

fi = d[b*N[0] + j]*d[a*N[0] + i]*iU[i +

N[0]*(a + N[1]*(j + N[0]*(b + N[1]*t)))]*rho0[i];

}

}

}

}

2.3 Fortran interface to the C code

3

